für Mathematik in den Naturwissenschaften Leipzig
نویسندگان
چکیده
Motivated by relaxation in the calculus of variations, this paper addresses convex but not necessarily strictly convex minimization problems. A class of energy functionals is described for which any stress field σ in L(Ω) with div σ in W 1,p ′ (Ω) (from Euler Lagrange equations and smooth lower order terms) belongs to W 1,q loc (Ω). Applications include the scalar double-well potential, an optimal design problem, a vectorial double-well problem in a compatible case, and Hencky elastoplasticity with hardening. If the energy density depends only on the modulus of the gradient we also show regularity up to the boundary.
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003